z-logo
open-access-imgOpen Access
Functional hydrogels for diabetic wound management
Author(s) -
Daqian Gao,
Yidan Zhang,
Daniel T. Bowers,
Wanjun Liu,
Minglin Ma
Publication year - 2021
Publication title -
apl bioengineering
Language(s) - English
Resource type - Journals
ISSN - 2473-2877
DOI - 10.1063/5.0046682
Subject(s) - self healing hydrogels , wound healing , angiogenesis , inflammation , wound dressing , medicine , surgery , chemistry , immunology , materials science , organic chemistry , composite material
Diabetic wounds often have a slow healing process and become easily infected owing to hyperglycemia in wound beds. Once planktonic bacterial cells develop into biofilms, the diabetic wound becomes more resistant to treatment. Although it remains challenging to accelerate healing in a diabetic wound due to complex pathology, including bacterial infection, high reactive oxygen species, chronic inflammation, and impaired angiogenesis, the development of multifunctional hydrogels is a promising strategy. Multiple functions, including antibacterial, pro-angiogenesis, and overall pro-healing, are high priorities. Here, design strategies, mechanisms of action, performance, and application of functional hydrogels are systematically discussed. The unique properties of hydrogels, including bactericidal and wound healing promotive effects, are reviewed. Considering the clinical need, stimuli-responsive and multifunctional hydrogels that can accelerate diabetic wound healing are likely to form an important part of future diabetic wound management.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom