z-logo
open-access-imgOpen Access
Bioengineering strategies to control epithelial-to-mesenchymal transition for studies of cardiac development and disease
Author(s) -
Dawn Bannerman,
Simón Pascual-Gil,
Marie Floryan,
Milica Radisic
Publication year - 2021
Publication title -
apl bioengineering
Language(s) - English
Resource type - Journals
ISSN - 2473-2877
DOI - 10.1063/5.0033710
Subject(s) - epithelial–mesenchymal transition , regenerative medicine , mesenchymal stem cell , regeneration (biology) , biology , process (computing) , tissue engineering , bioinformatics , neuroscience , cancer , computational biology , computer science , microbiology and biotechnology , metastasis , stem cell , genetics , operating system
Epithelial-to-mesenchymal transition (EMT) is a process that occurs in a wide range of tissues and environments, in response to numerous factors and conditions, and plays a critical role in development, disease, and regeneration. The process involves epithelia transitioning into a mobile state and becoming mesenchymal cells. The investigation of EMT processes has been important for understanding developmental biology and disease progression, enabling the advancement of treatment approaches for a variety of disorders such as cancer and myocardial infarction. More recently, tissue engineering efforts have also recognized the importance of controlling the EMT process. In this review, we provide an overview of the EMT process and the signaling pathways and factors that control it, followed by a discussion of bioengineering strategies to control EMT. Important biological, biomaterial, biochemical, and physical factors and properties that have been utilized to control EMT are described, as well as the studies that have investigated the modulation of EMT in tissue engineering and regenerative approaches in vivo , with a specific focus on the heart. Novel tools that can be used to characterize and assess EMT are discussed and finally, we close with a perspective on new bioengineering methods that have the potential to transform our ability to control EMT, ultimately leading to new therapies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom