z-logo
open-access-imgOpen Access
Optimized symmetry functions for machine-learning interatomic potentials of multicomponent systems
Author(s) -
Samare Rostami,
Maximilian Amsler,
S. Alireza Ghasemi
Publication year - 2018
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.5040005
Subject(s) - symmetry (geometry) , artificial neural network , scaling , ab initio , ionic bonding , yield (engineering) , work (physics) , statistical physics , ab initio quantum chemistry methods , energy (signal processing) , computer science , materials science , biological system , chemical physics , chemistry , physics , machine learning , thermodynamics , molecule , mathematics , quantum mechanics , ion , geometry , biology

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom