z-logo
open-access-imgOpen Access
Physics-informed machine learning for inorganic scintillator discovery
Author(s) -
Ghanshyam Pilania,
K. J. McClellan,
C. R. Stanek,
Blas P. Uberuaga
Publication year - 2018
Publication title -
the journal of chemical physics
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.5025819
Subject(s) - scintillator , lanthanide , excited state , valence (chemistry) , activator (genetics) , band gap , physics , scintillation , materials science , nanotechnology , ion , atomic physics , chemistry , optoelectronics , detector , quantum mechanics , optics , biochemistry , gene

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom