z-logo
open-access-imgOpen Access
Electrocaloric induced retarded ferroelectric switching
Author(s) -
Till Buchacher,
Maciej Rokosz,
Robert Dorey,
J. Allam,
Andrew Gregory
Publication year - 2017
Publication title -
applied physics letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.182
H-Index - 442
eISSN - 1077-3118
pISSN - 0003-6951
DOI - 10.1063/1.4973752
Subject(s) - ferroelectricity , electrocaloric effect , materials science , microsecond , electric field , condensed matter physics , switching time , optoelectronics , dielectric , optics , physics , quantum mechanics
Ferroelectric switching in bulk materials, at modest electric fields, is a relatively fast process, occurring on time scales of microseconds and less. A secondary retarded switching phenomenon also occurs on time scales of seconds and has previously been attributed to defect induced elevated energy barriers between polarisation states. As ferroelectric switching is a thermally activated process the barrier heights are also affected by temperature which is not constant in ferroelectric materials due to the electrocaloric effect. Here an additional EC induced retardation mechanism is proposed whereby EC induced temperature changes repeatedly temporarily prevent further FE switching during cooling cycles

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom