Design and application of ion-implanted polySi passivating contacts for interdigitated back contact c-Si solar cells
Author(s) -
Guangtao Yang,
Andrea Ingenito,
Nienke van Hameren,
Olindo Isabella,
Miro Zeman
Publication year - 2016
Publication title -
applied physics letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.182
H-Index - 442
eISSN - 1077-3118
pISSN - 0003-6951
DOI - 10.1063/1.4940364
Subject(s) - passivation , materials science , doping , annealing (glass) , ion implantation , analytical chemistry (journal) , optoelectronics , common emitter , dopant , ion , nanotechnology , layer (electronics) , chemistry , metallurgy , organic chemistry , chromatography
Ion-implanted passivating contacts based on poly-crystalline silicon (polySi) are enabled by tunneling oxide, optimized, and used to fabricate interdigitated back contact (IBC) solar cells. Both n-type (phosphorous doped) and p-type (boron doped) passivating contacts are fabricated by ion-implantation of intrinsic polySi layers deposited via low-pressure chemical vapor deposition and subsequently annealed. The impact of doping profile on the passivation quality of the polySi doped contacts is studied for both polarities. It was found that an excellent surface passivation could be obtained by confining as much as possible the implanted-and-activated dopants within the polySi layers. The doping profile in the polySi was controlled by modifying the polySi thickness, the energy and dose of ion-implantation, and the temperature and time of annealing. An implied open-circuit voltage of 721 mV for n-type and 692 mV for p-type passivating contacts was achieved. Besides the high passivating quality, the developed passivating contacts exhibit reasonable high conductivity (Rsh n-type = 95 Ω/□ and Rsh p-type = 120 Ω/□). An efficiency of 19.2% (Voc = 673 mV, Jsc = 38.0 mA/cm2, FF = 75.2%, and pseudo-FF = 83.2%) was achieved on a front-textured IBC solar cell with polySi passivating contacts as both back surface field and emitter. By improving the front-side passivation, a VOC of 696 mV was also measured
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom