z-logo
open-access-imgOpen Access
Electronic spectrum of the propargyl cation (H2C3H+) tagged with Ne and N2
Author(s) -
Katherine J. Catani,
Julian A. Sanelli,
Viktoras Dryza,
Natalie Gilka,
Peter R. Taylor,
Evan J. Bieske
Publication year - 2015
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.4935169
Subject(s) - excited state , propargyl , chemistry , atomic physics , photodissociation , ab initio , ion , ground state , ab initio quantum chemistry methods , coupled cluster , physics , molecule , photochemistry , biochemistry , organic chemistry , catalysis
The Ã(1)A1 ← X̃(1)A1 band system of the propargyl cation (H2C3H(+)) is measured over the 230-270 nm range by photodissociation of mass-selected H2C3H(+)-Ne and H2C3H(+)-N2 complexes in a tandem mass spectrometer. The band origin occurs at 37 618 cm(-1) for H2C3H(+)-Ne and 37 703 cm(-1) for H2C3H(+)-N2. Ground and excited state ab initio calculations for H2C3H(+) using the MCSCF and coupled-cluster (CC) response methods show that the ion has C2v symmetry in the ground X̃(1)A1 and excited Ã(1)A1 states and that the strong vibronic progression with a spacing of 630 cm(-1) is due to the C-C stretch vibrational mode, ν 5.Restricted Access: Metadata Onl

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom