z-logo
open-access-imgOpen Access
Magneto-caloric effect of a Gd50Co50 amorphous alloy near the freezing point of water
Author(s) -
L. Xia,
C. Wu,
Shunhua Chen,
K.C. Chan
Publication year - 2015
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4930832
Subject(s) - amorphous solid , materials science , curie temperature , amorphous metal , alloy , condensed matter physics , magnetic refrigeration , adiabatic process , thermodynamics , metallurgy , ferromagnetism , magnetization , crystallography , magnetic field , chemistry , physics , quantum mechanics
In the present work, we report the magneto-caloric effect (MCE) of a binary Gd50Co50 amorphous alloy near the freezing temperature of water. The Curie temperature of Gd50Co50 amorphous ribbons is about 267.5 K, which is very close to room temperature. The peak value of the magnetic entropy change (-ΔSmpeak) and the resulting adiabatic temperature rise (ΔTad.) of the Gd50Co50 amorphous ribbons is much higher than that of any other amorphous alloys previously reported with a Tc near room temperature. On the other hand, although the -ΔSmpeak of Gd50Co50 amorphous ribbons is not as high as those of crystalline alloys near room temperature, its refrigeration capacity (RC) is still much larger than the RC values of these crystalline alloys. The binary Gd50Co50 amorphous alloy provides a basic alloy for developing high performance multi-component amorphous alloys near room temperature

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom