z-logo
open-access-imgOpen Access
Lattice distortion mechanism study of TiO2 nanoparticles during photocatalysis degradation and reactivation
Author(s) -
Wenhui Wu,
Xudong Xue,
Xudong Jiang,
Yupeng Zhang,
Yichu Wu,
Chunxu Pan
Publication year - 2015
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4919811
Subject(s) - high resolution transmission electron microscopy , photoluminescence , raman spectroscopy , photocatalysis , materials science , spectroscopy , transmission electron microscopy , nanoparticle , annealing (glass) , analytical chemistry (journal) , photochemistry , nanotechnology , optics , optoelectronics , chemistry , physics , composite material , catalysis , chromatography , biochemistry , quantum mechanics
In this paper, the photocatalytic process of TiO2 (P25) is directly characterized by using a positron annihilation lifetime spectroscopy (PALS), high-resolution transmission electron microscopy (HRTEM), Photoluminescence spectroscopy (PL) and UV Raman spectroscopy (Raman). The experimental results reveal that: 1) From PALS measurements, because τ1 and τ2 values and their intensity (I1 and I2) assigned to the different size and amounts of defects, respectively, their variations indicate the formation of different types and amounts of defects during the absorption and degradation. 2) HRTEM observations show that the lattice images become partly blurring when the methylene blue is fully degradated, and clear again after exposed in the air for 30 days. According to the results, we propose a mechanism that the lattice distortion induces the defects as electron capture sites and provides energy for improving photocatalytic process. Meanwhile, the lattice distortion relaxation after exposing in the air for 30 days perfectly explains the gradual deactivation of TiO2, because the smaller vacancy defects grow and agglomerate through the several photocatalytic processes. The instrumental PL and Raman are also used to analyze the samples and approved the results of PALS and HRTEM

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom