z-logo
open-access-imgOpen Access
Theoretical and experimental research on the influence of multiple piezoelectric effects on physical parameters of piezoelectric actuator
Author(s) -
Liping Shi,
Haimin Zhou,
Jie Huang,
Tan Ji-liang
Publication year - 2015
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4916329
Subject(s) - piezoelectric coefficient , piezoelectricity , materials science , electromechanical coupling coefficient , piezoelectric accelerometer , dielectric , pmut , piezoelectric motor , composite material , optoelectronics
Compared with the traditional actuator of machinery and electricity, the piezoelectric actuator has the advantages of a compact structure, small volume, no mechanical friction, athermancy and no electromagnetic interference. Therefore, it has high application value in the fields of MEMS, bioengineering, medical science and so on. This article draws conclusions from the influence of multiple piezoelectric effects on the physical parameters (dielectric coefficient, equivalent capacity, energy conversion and piezoelectric coefficient) of piezoelectric actuators. These data from theoretical and experimental research show the following: (1) The rate between the dielectric coefficient of piezoelectric in mechanical freedom and clamping is obtained from the secondary direct piezoelectric effect, which enhances the dielectric property, increases the dielectric coefficient and decreases the coefficient of dielectric isolation; (2) Under external field, En(ex)=E1, exterior stress T = 0, that is to say, under the boundary condition of mechanical freedom, piezoelectric can store electric energy and elasticity, which obtains power density, elastic density and an electromechanical coupling factor; (3) According to the piezoelectric strain Si(1), piezoelectric displacement Dm(2)and piezoelectric strain Si(3)of multiple piezoelectric effects, when the dielectric coefficient of the first converse piezoelectric effect ε33 is 1326 and the dielectric coefficient of the secondary direct piezoelectric effect increases to 3336, the dielectric coefficient of the ceramic chip increases. When the piezoelectric coefficient of the first converse piezoelectric effect d33 is 595 and the piezoelectric coefficient of the secondary direct piezoelectric effect decreases to 240, the piezoelectric coefficient of the ceramic chip will decrease. It is of major significance both in the applications and in basic theory to research the influence of multiple piezoelectric effects on the physical parameters of piezoelectric actuators. On the one hand, this can further increase the control precision of piezoelectric actuators. On the other hand, it can be applied to research on the physical parameters and self-sensing actuators, like piezoelectric quartz and piezoelectric ceramic self-sensing actuators, which will be of great service for MEMS

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom