z-logo
open-access-imgOpen Access
Barrier height inhomogeneity in electrical transport characteristics of InGaN/GaN heterostructure interfaces
Author(s) -
Basanta Roul,
Shruti Mukundan,
Greeshma Chandan,
L. R. Ram Mohan,
S. B. Krupanidhi
Publication year - 2015
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4916264
Subject(s) - thermionic emission , heterojunction , molecular beam epitaxy , condensed matter physics , materials science , rectangular potential barrier , gaussian , standard deviation , chemistry , physics , epitaxy , electron , nanotechnology , computational chemistry , mathematics , statistics , layer (electronics) , quantum mechanics
We have grown InGaN/GaN heterostructures using plasma-assisted molecular beam epitaxy and studied the temperature dependent electrical transport characteristics. The barrier height (φb) and the ideally factor (η) estimated using thermionic emission model were found to be temperature dependent. The conventional Richardson plot of ln(Js/T2) versus 1/kT showed two temperature regions (region-I: 400–500 K and region-II: 200–350 K) and it provides Richardson constants (A∗) which are much lower than the theoretical value of GaN. The observed variation in the barrier height and the presence of two temperature regions were attributed to spatial barrier inhomogeneities at the heterojunction interface and was explained by assuming a double Gaussian distribution of barrier heights with mean barrier height values 1.61 and 1.21 eV with standard deviation (σs2) of 0.044 and 0.022 V, respectively. The modified Richardson plot of ln(Js/T2) − (q2σs2/2k2T2) versus 1/kT for two temperature regions gave mean barrier height values as 1.61 eV and 1.22 eV with Richardson constants (A∗) values 25.5 Acm−2K−2 and 43.9 Acm−2K−2, respectively, which are very close to the theoretical value. The observed barrier height inhomogeneities were interpreted on the basis of the existence of a double Gaussian distribution of barrier heights at the interface

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom