z-logo
open-access-imgOpen Access
Modification of inkjet printer for polymer sensitive layer preparation on silicon-based gas sensors
Author(s) -
Tianjian Li,
Ying Dong,
Dengpeng Yuan,
Yujin Liu
Publication year - 2015
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4914937
Subject(s) - wafer , layer (electronics) , materials science , deposition (geology) , silicon , nanotechnology , tray , polymer , polyvinyl alcohol , optoelectronics , inkwell , composite material , mechanical engineering , engineering , paleontology , sediment , biology
Inkjet printing is a versatile, low cost deposition technology with the capabilities for the localized deposition of high precision, patterned deposition in a programmable way, and the parallel deposition of a variety of materials. This paper demonstrates a new method of modifying the consumer inkjet printer to prepare polymer-sensitive layers on silicon wafer for gas sensor applications. A special printing tray for the modified inkjet printer to support a 4-inch silicon wafer is designed. The positioning accuracy of the deposition system is tested, based on the newly modified printer. The experimental data show that the positioning errors in the horizontal direction are negligibly small, while the positioning errors in the vertical direction rise with the increase of the printing distance of the wafer. The method for making suitable ink to be deposited to form the polymer-sensitive layer is also discussed. In the testing, a solution of 0.1 wt% polyvinyl alcohol (PVA) was used as ink to prepare a sensitive layer with certain dimensions at a specific location on the surface of the silicon wafer, and the results prove the feasibility of the methods presented in this article

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom