
Multicarrier chaotic communications in multipath fading channels without channel estimation
Author(s) -
Shilian Wang,
Zhili Zhang
Publication year - 2015
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4906984
Subject(s) - orthogonal frequency division multiplexing , subcarrier , computer science , chaotic , multipath propagation , fading , electronic engineering , channel (broadcasting) , telecommunications , additive white gaussian noise , algorithm , engineering , artificial intelligence
A multi-carrier chaotic shift keying(MC-CSK) communication scheme with low probability of interception(LPI) is proposed in this article. We apply chaotic spreading sequences in the frequency domain, mapping a different chip of a chaotic sequence to an individual orthogonal frequency division multiplexing(OFDM) subcarrier. In each block size of $M$ OFDM symbols, we use one pilot OFDM symbol inserted time-spaced in all-frequency to transmit the reference chaotic signal and use the other M-1 OFDM symbols to transmit the information-bearing signals each spreaded by the reference chaotic signal. At the receiver, we construct a differential detector after DFT and recover the information bits from the correlations between the pilot OFDM symbol and the other M-1 OFDM symbols in each block size of M. Performance analysis and computer simulations show that the MC-CSK outperforms differential chaos shift keying(DCSK) in AWGN channels with high bandwidth efficiency for the block size of M=2 and that the MC-CSK exploits effectively the frequent diversity of the multipath channel