z-logo
open-access-imgOpen Access
Improving p-type doping efficiency in Al0.83Ga0.17N alloy substituted by nanoscale (AlN)5/(GaN)1 superlattice with MgGa-ON δ-codoping: Role of O-atom in GaN monolayer
Author(s) -
Hongxia Zhong,
Junjie Shi,
Min Zhang,
Xin-he Jiang,
Pu Huang,
Yi-min Ding
Publication year - 2015
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4905884
Subject(s) - superlattice , atom (system on chip) , materials science , doping , acceptor , alloy , nanoscopic scale , crystallography , activation energy , condensed matter physics , chemistry , nanotechnology , optoelectronics , physics , metallurgy , computer science , embedded system
We calculate Mg-acceptor activation energy EA and investigate the influence of O-atom, occupied the Mg nearest-neighbor, on EA in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. We find that the N-atom bonded with Ga-atom is more easily substituted by O-atom and nMgGa-ON (n = 1-3) complexes are favorable and stable in the SL. The O-atom plays a dominant role in reducing EA. The shorter the Mg-O bond is, the smaller the EA is. The Mg-acceptor activation energy can be reduced significantly by nMgGa-ON δ-codoping. Our calculated EA for 2MgGa-ON is 0.21 eV, and can be further reduced to 0.13 eV for 3MgGa-ON, which results in a high hole concentration in the order of 1020 cm−3 at room temperature in (AlN)5/(GaN)1 SL. Our results prove that nMgGa-ON (n = 2,3) δ-codoping in AlN/GaN SL with ultrathin GaN-layer is an effective way to improve p-type doping efficiency in Al-rich AlGaN

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom