Simplified continuum solvent model with a smooth cavity based on volumetric data
Author(s) -
A. Held,
Michael Walter
Publication year - 2014
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.4900838
Subject(s) - solvation , aqueous solution , chemistry , dilution , van der waals force , ionic bonding , gibbs free energy , solvent , thermodynamics , ion , molecule , chemical physics , molecular physics , physics , organic chemistry
We present a continuum solvent model (CSM) with a smooth cavity for the application in grid-based electronic structure methods. The cavity is identified with the inherently smooth distribution function of a binary mixture at infinite dilution. We obtain a cavity model based on atomic van der Waals radii and one free parameter controlling the overall size. This single parameter is sufficient to adequately reproduce experimental partial molar volumes. The CSM based on this cavity is of similar accuracy in the prediction of aqueous solvation Gibbs energies of small neutral molecules and ions as other CSMs with a smooth cavity. We apply the model to systems in non-aqueous solution, i.e., spiropyran/merocyanin energetics, a proton transfer reaction in dimethyl sulfoxide, and the electrostatic screening of charged gold clusters in an ionic liquid
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom