
Hybrid density functional theory study of Cu(In1−xGax)Se2 band structure for solar cell application
Author(s) -
Xudong Chen,
Lin Chen,
Qi Sun,
Panyue Zhou,
David Wei Zhang
Publication year - 2014
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4893238
Subject(s) - copper indium gallium selenide solar cells , density functional theory , alloy , band gap , electronic band structure , materials science , solar cell , photovoltaic system , optoelectronics , thin film , electronic structure , density of states , condensed matter physics , chemistry , computational chemistry , nanotechnology , metallurgy , physics , electrical engineering , engineering
Cu(In1−xGax)Se2 (CIGS) alloy based thin film photovoltaic solar cells have attracted more and more attention due to its large optical absorption coefficient, long term stability, low cost and high efficiency. However, the previous theoretical investigation of this material with first principle calculation cannot fulfill the requirement of experimental development, especially the accurate description of band structure and density of states. In this work, we use first principle calculation based on hybrid density functional theory to investigate the feature of CIGS, with B3LYP applied in the CuIn1−xGaxSe2 stimulation of the band structure and density of states. We report the simulation of the lattice parameter, band gap and chemical composition. The band gaps of CuGaSe2, CuIn0.25Ga0.75Se2, CuIn0.5Ga0.5Se2, CuIn0.75Ga0.25Se2 and CuInSe2 are obtained as 1.568 eV, 1.445 eV, 1.416 eV, 1.275 eV and 1.205 eV according to our calculation, which agree well with the available experimental values. The band structure of CIGS is also in accordance with the current theory