z-logo
open-access-imgOpen Access
Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers
Author(s) -
Jing Feng
Publication year - 2014
Publication title -
apl materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.571
H-Index - 60
ISSN - 2166-532X
DOI - 10.1063/1.4885256
Subject(s) - materials science , shear modulus , elastic modulus , anisotropy , perovskite (structure) , chemical bond , solar cell , crystal structure , bulk modulus , crystallography , composite material , organic chemistry , optics , chemistry , optoelectronics , physics
The crystal structures, elastic and anisotropic properties of CH3NH3BX3 (B = Sn, Pb; X = Br, I) compounds as solar cell absorber layers are investigated by the first-principles calculations. The type and strength of chemical bond B-X are found to determine the elastic properties. B-X bonds and the organic cations are therefore crucial to the functionalities of such absorbers. The bulk, shear, Young's modulus ranges from 12 to 30 GPa, 3 to 12 GPa, and 15 to 37 GPa, respectively. Moreover, the interaction among organic and inorganic ions would have negligible effect for elastic properties. The B/G and Poisson's ratio show it would have a good ductile ability for extensive deformation as a flexible/stretchable layer on the polymer substrate. The main reason is attributed to the low shear modulus of such perovskites. The anisotropic indices AU, AB AG, A1, A2, and A3 show ABX3 perovskite have very strong anisotropy derived from the elastic constants, chemical bonds, and symmetry

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom