Magnetic transitions driven by temperature in surface oxidized Co0.10Ni0.90/Cu(001) ultrathin films
Author(s) -
Ying-Ta Shih,
Wenhe Shen,
KuoLong Lee,
W. Pan
Publication year - 2014
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4864037
Subject(s) - magnetization , materials science , condensed matter physics , coercivity , antiferromagnetism , film plane , monolayer , magnetic anisotropy , spin (aerodynamics) , spin valve , nanotechnology , magnetic field , thermodynamics , physics , quantum mechanics
The magnetization of Co0.10Ni0.90/Cu(001) films before and after surface oxidization at 300 K is presented. Before the oxidization, the magnetization of the films in the thickness of 11 to 20 monolayers (ML) is in the in-plane direction at the temperature ranging from 140 K to 300 K. After the oxidization, the magnetizations of the films are in the in-plane direction at the temperature above 200 K, but transit to magnetization demolishment, in-plane-and-out-of-plane co-existence, spin reorientation transition, and coercivity enhancement, for films of 11, 12, 13, and above 15 ML, respectively. The blocking temperature of this film is also 200 K, which implies the transitions might be driven by the ordering of the antiferromagnetic surface oxides. The various magnetizations provide a model system for manipulating the magnetization direction, as well as a spin valve device by combination of the oxidized films
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom