z-logo
open-access-imgOpen Access
Development of a general method for obtaining the geometry of microfluidic networks
Author(s) -
Mohammad S. Razavi,
Ebrahim Shirani,
Mohammad Reza Salimpour
Publication year - 2014
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4861067
Subject(s) - microfluidics , constructal law , miniaturization , maximum flow problem , fluidics , flow (mathematics) , energy minimization , fabrication , geometry , pressure drop , cross section (physics) , optimal design , mechanical engineering , mechanics , computer science , materials science , mathematical optimization , nanotechnology , mathematics , engineering , physics , electrical engineering , heat transfer , medicine , alternative medicine , pathology , quantum mechanics , machine learning
In the present study, a general method for geometry of fluidic networks is developed with emphasis on pressure-driven flows in the microfluidic applications. The design method is based on general features of network's geometry such as cross-sectional area and length of channels. Also, the method is applicable to various cross-sectional shapes such as circular, rectangular, triangular, and trapezoidal cross sections. Using constructal theory, the flow resistance, energy loss and performance of the network are optimized. Also, by this method, practical design strategies for the fabrication of microfluidic networks can be improved. The design method enables rapid prediction of fluid flow in the complex network of channels and is very useful for improving proper miniaturization and integration of microfluidic networks. Minimization of flow resistance of the network of channels leads to universal constants for consecutive cross-sectional areas and lengths. For a Y-shaped network, the optimal ratios of consecutive cross-section areas (Ai+1/Ai) and lengths (Li+1/Li) are obtained as Ai+1/Ai = 2−2/3 and Li+1/Li = 2−1/3, respectively. It is shown that energy loss in the network is proportional to the volume of network. It is also seen when the number of channels is increased both the hydraulic resistance and the volume occupied by the network are increased in a similar manner. Furthermore, the method offers that fabrication of multi-depth and multi-width microchannels should be considered as an integral part of designing procedures. Finally, numerical simulations for the fluid flow in the network have been performed and results show very good agreement with analytic results

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom