z-logo
open-access-imgOpen Access
Phase diagram of compressively strained nickelate thin films
Author(s) -
Ankit Disa,
Divine P. Kumah,
Joseph H. Ngai,
E. D. Specht,
D. A. Arena,
F. J. Walker,
Charles Ahn
Publication year - 2013
Publication title -
apl materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.571
H-Index - 60
ISSN - 2166-532X
DOI - 10.1063/1.4820431
Subject(s) - phase diagram , thin film , materials science , condensed matter physics , metal–insulator transition , epitaxy , phase (matter) , metal , nanotechnology , physics , metallurgy , layer (electronics) , quantum mechanics
The complex phase diagrams of strongly correlated oxides arise from the coupling between physical and electronic structure. This can lead to a renormalization of the phase boundaries when considering thin films rather than bulk crystals due to reduced dimensionality and epitaxial strain. The well-established bulk RNiO3 phase diagram shows a systematic dependence between the metal-insulator transition and the perovskite A-site rare-earth ion, R. Here, we explore the equivalent phase diagram for nickelate thin films under compressive epitaxial strain. We determine the metal-insulator phase diagram for the solid solution of Nd1-yLayNiO3 thin films within the range 0 ≤ y ≤ 1. We find qualitative similarity between the films and their bulk analogs, but with an overall renormalization in the metal-insulator transition to lower temperature. A combination of x-ray diffraction measurements and soft x-ray absorption spectroscopy indicates that the renormalization is due to increased Ni–O bond hybridization for coherently strained thin films

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom