Modulation of Dirac points and band-gaps in graphene via periodic fullerene adsorption
Author(s) -
Xiao Liu,
Yanwei Wen,
Zhengzheng Chen,
Lin Hao,
Rong Chen,
Kyeongjae Cho,
Bin Shan
Publication year - 2013
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4807738
Subject(s) - graphene , fullerene , band gap , brillouin zone , materials science , density functional theory , dirac (video compression format) , adsorption , electronic band structure , condensed matter physics , molecular physics , computational chemistry , chemical physics , nanotechnology , chemistry , physics , optoelectronics , quantum mechanics , organic chemistry , neutrino
The structural, energetic and electronic properties of periodic graphene nanobud (PGNB) with small-diameter fullerenes (C20, C34, C42, and C60) adsorbed have been investigated by first-principles plane wave method. The bond-to-ring cycloaddition is found to be energetically most stable among various configurations and the minimum energy paths of different-sized fullerenes attaching to graphene indicate that smaller fullerene shows lower energy barriers due to its larger surface curvature. For perfectly ordered adsorption, band structures analyses by both density functional theory (DFT) and tight binding (TB) methods show that the Dirac cone of graphene can be generally preserved despite the sp2 to sp3 bond hybridization change for selected carbon atoms in graphene sheet. However, the position of the Dirac points inside the Brillouin zone has a shift from the hexagonal corner and can be effectively modulated by changing the fullerenes’ concentration. For practical applications, we show that a considerable band gap (∼0.35 eV) can be opened by inducing randomness in the orientation of the fullerene adsorption and an effective order parameter is identified that correlates well with the magnitude of the band gap opening
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom