z-logo
open-access-imgOpen Access
Room-temperature thermally induced relaxation effect in a two-dimensional cyano-bridged Cu-Mo bimetal assembly and thermodynamic analysis of the relaxation process
Author(s) -
Yoshikazu Umeta,
Hiroko Tokoro,
Noriaki Ozaki,
Shinichi Ohkoshi
Publication year - 2013
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4802970
Subject(s) - activation energy , relaxation (psychology) , phase (matter) , materials science , chemistry , thermodynamics , analytical chemistry (journal) , psychology , social psychology , physics , organic chemistry , chromatography
We observed a photo-switching effect in [CuII(1,4,8,11-tetraazacyclodecane)]2[MoIV(CN)8]·10H2O by irradiation with 410-nm light around room temperature using infrared spectroscopy. This photo-switching is caused by the photo-induced charge transfer from MoIV to CuII. The photo-induced phase thermally relaxed to the initial phase with a half-life time of 2.7 × 101, 6.9 × 101, and 1.7 × 102 s at 293, 283, and 273 K, respectively. The relaxation process was analyzed using Hauser's equation, k = k0exp[−(Ea + Ea*γ) / kBT], where k is the rate constant of relaxation, k0 is the frequency factor, Ea is the activation energy, Ea* is the additional activation energy due to the cooperativity, and γ is the fraction of the photo-induced phase. k0, Ea, and Ea* were evaluated as 1.28 × 107 ± 2.6 s−1, 4002 ± 188 cm−1, and 546 ± 318 cm−1, respectively. The value of Ea is much larger than that of the relaxation process for the typical light-induced spin crossover effect (Ea ≈ 1000 cm−1). Room-temperature photo-switching is an important issue in the field of optical functional materials. The present system is useful for the demonstration of high-temperature photo-switching material

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom