Multidimensional wave packet dynamics within the fluid dynamical formulation of the Schrödinger equation
Author(s) -
Bijoy K. Dey,
Attila Aşkar,
Herschel Rabitz
Publication year - 1998
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.477547
Subject(s) - wave packet , schrödinger equation , classical mechanics , quantum , physics , quantum dynamics , representation (politics) , space (punctuation) , mathematics , mathematical analysis , quantum mechanics , computer science , politics , political science , law , operating system
This paper explores the quantum fluid dynamical (QFD) representation of the time-dependent Schrodinger equation for the motion of a wave packet in a high dimensional space. A novel alternating direction technique is utilized to single our each of the many dimensions in the QFD equations. This technique is used to solve the continuity equation for the density and the equation for the convection of the flux for the quantum particle. The ability of the present scheme to efficiently and accurately describe the dynamics of a quantum particle is demonstrated in four dimensions where analytical results are known. We also apply the technique to the photodissociation of NOCl and NO2 where the systems are reduced to two coordinates by freezing the angular variable at its equilibrium value
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom