z-logo
open-access-imgOpen Access
Electron paramagnetic resonance and theoretical studies of Nb in 4H- and 6H-SiC
Author(s) -
Nguyên Tiên Són,
Xuan Thang Trinh,
Andreas Gällström,
Stefano Leone,
Olof Kordina,
Erik Janzén,
Krisztián Szász,
Viktor Ivády,
Ádám Gali
Publication year - 2012
Publication title -
journal of applied physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.699
H-Index - 319
eISSN - 1089-7550
pISSN - 0021-8979
DOI - 10.1063/1.4759362
Subject(s) - electron paramagnetic resonance , vacancy defect , materials science , hyperfine structure , paramagnetism , crystallographic defect , silicon , impurity , silicon carbide , doping , condensed matter physics , atomic physics , crystallography , chemistry , nuclear magnetic resonance , optoelectronics , physics , organic chemistry , metallurgy
High purity silicon carbide (SiC) materials are of interest from high-power high temperature applications across recent photo-voltaic cells to hosting solid state quantum bits, where the tight control of electrically, optically, and magnetically active point defects is pivotal in these areas. 4H- and 6H-SiC substrates are grown at high temperatures and the incorporation of transition metal impurities is common. In unintentionally Nb-doped 4H- and 6H-SiC substrates grown by high-temperature chemical vapor deposition, an electron paramagnetic resonance (EPR) spectrum with C-1h symmetry and a clear hyperfine (hf) structure consisting of ten equal intensity hf lines was observed. The hf structure can be identified as due to the interaction between the electron spin S - 1/2 and the nuclear spin of Nb-93. Additional hf structures due to the interaction with three Si neighbors were also detected. In 4H-SiC, a considerable spin density of similar to 37.4% was found on three Si neighbors, suggesting the defect to be a complex between Nb and a nearby carbon vacancy (V-C). Calculations of the Nb-93 and Si-29 hf constants of the neutral Nb on Si site, Nb-Si(0), and the Nb-vacancy defect, NbSiVC0, support previous reported results that Nb preferentially forms an asymmetric split-vacancy (ASV) defect. In both 4H- and 6H-SiC, only one Nb-related EPR spectrum has been observed, supporting the prediction from calculations that the hexagonal-hexagonal defect configuration of the ASV complex is more stable than others.

Funding Agencies|Swedish Energy Agency||Swedish Research Council VR/Linne Environment LiLI-NFM, FP7|270197|NHDP|TAMOP-4.2.1/B-09/1/KMR-2010-0002|Swedish National Infrastructure for Computing||Knut and Alice Wallenberg Foundation||

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom