Electron paramagnetic resonance and theoretical studies of Nb in 4H- and 6H-SiC
Author(s) -
Nguyên Tiên Són,
Xuan Thang Trinh,
Andreas Gällström,
Stefano Leone,
Olof Kordina,
Erik Janzén,
Krisztián Szász,
Viktor Ivády,
Ádám Gali
Publication year - 2012
Publication title -
journal of applied physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.699
H-Index - 319
eISSN - 1089-7550
pISSN - 0021-8979
DOI - 10.1063/1.4759362
Subject(s) - electron paramagnetic resonance , vacancy defect , materials science , hyperfine structure , paramagnetism , crystallographic defect , silicon , impurity , silicon carbide , doping , condensed matter physics , atomic physics , crystallography , chemistry , nuclear magnetic resonance , optoelectronics , physics , organic chemistry , metallurgy
High purity silicon carbide (SiC) materials are of interest from high-power high temperature applications across recent photo-voltaic cells to hosting solid state quantum bits, where the tight control of electrically, optically, and magnetically active point defects is pivotal in these areas. 4H- and 6H-SiC substrates are grown at high temperatures and the incorporation of transition metal impurities is common. In unintentionally Nb-doped 4H- and 6H-SiC substrates grown by high-temperature chemical vapor deposition, an electron paramagnetic resonance (EPR) spectrum with C-1h symmetry and a clear hyperfine (hf) structure consisting of ten equal intensity hf lines was observed. The hf structure can be identified as due to the interaction between the electron spin S - 1/2 and the nuclear spin of Nb-93. Additional hf structures due to the interaction with three Si neighbors were also detected. In 4H-SiC, a considerable spin density of similar to 37.4% was found on three Si neighbors, suggesting the defect to be a complex between Nb and a nearby carbon vacancy (V-C). Calculations of the Nb-93 and Si-29 hf constants of the neutral Nb on Si site, Nb-Si(0), and the Nb-vacancy defect, NbSiVC0, support previous reported results that Nb preferentially forms an asymmetric split-vacancy (ASV) defect. In both 4H- and 6H-SiC, only one Nb-related EPR spectrum has been observed, supporting the prediction from calculations that the hexagonal-hexagonal defect configuration of the ASV complex is more stable than others.
Funding Agencies|Swedish Energy Agency||Swedish Research Council VR/Linne Environment LiLI-NFM, FP7|270197|NHDP|TAMOP-4.2.1/B-09/1/KMR-2010-0002|Swedish National Infrastructure for Computing||Knut and Alice Wallenberg Foundation||
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom