z-logo
open-access-imgOpen Access
Structural modifications of zinc phthalocyanine thin films for organic photovoltaic applications
Author(s) -
Ying Zhou,
Tetsuya Taima,
Tetsuhiko Miyadera,
Toshihiro Yamanari,
Yūji Yoshida
Publication year - 2012
Publication title -
journal of applied physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.699
H-Index - 319
eISSN - 1089-7550
pISSN - 0021-8979
DOI - 10.1063/1.4721409
Subject(s) - materials science , photocurrent , heterojunction , thin film , phthalocyanine , indium tin oxide , photovoltaics , organic solar cell , substrate (aquarium) , indium , zinc , optoelectronics , vacuum deposition , solar cell , chemical engineering , nanotechnology , photovoltaic system , composite material , polymer , metallurgy , ecology , oceanography , geology , engineering , biology
Zinc phthalocyanine (ZnPc) thin films are vacuum-evaporated on bare indium-tin-oxide (ITO) coated glass by varying substrate temperature and growth rate. The samples are characterized by atomic force microscopy, x-ray diffraction, and infrared spectroscopy. The temperature does not play a clear role in the crystalline growth of ZnPc possibly due to the significant structural defects on ITO surface, while it strongly influences the surface morphology and molecular alignment. The relationships between growth characteristics and performances of photovoltaics with planar heterojunction are discussed in detail. Increasing temperature or growth rate leads to a rougher surface morphology, which enables more donor/accepter interface area for photocurrent generation. Moreover, at elevated temperature, more molecules adopt standing-up geometry, resulting in a reduction in overall efficiency. The results imply that low-temperature process in order to control the molecular alignment is preferred for efficient organic photovoltaics. By simply increasing the growth rate of ZnPc up to 0.40 Å/s at room temperature, ZnPc/C60 planar heterojunction shows an efficiency of 1.66, compared to 1.24 for the cell when ZnPc is prepared at 0.10 Å/s. © 2012 American Institute of Physics

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom