z-logo
open-access-imgOpen Access
Tracer-encapsulated solid pellet injection system
Author(s) -
S. Sudo,
N. Tamura
Publication year - 2012
Publication title -
review of scientific instruments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 165
eISSN - 1089-7623
pISSN - 0034-6748
DOI - 10.1063/1.3681447
Subject(s) - tracer , materials science , pellet , impurity , ablation , nuclear engineering , plasma , mass spectrometry , atomic physics , aerospace engineering , nuclear physics , physics , chemistry , chromatography , quantum mechanics , engineering , composite material
he method of tracer-encapsulated solid pellet (TESPEL) is now flourishing in various fields. The original purpose to study impurity transport without giving substantial perturbation on the plasma is implemented successfully for years. In addition to this, TESPEL is being intensively applied to study thermal (especially non-local) transport, high energy particles with the use of TESPEL ablation cloud, and spectroscopy from the viewpoint of atomic data. It is now further growing up to the utilization of multiple tracer methods which was not planned at the initial phase of the project. The proof-of-principle experiment using triple tracers has been successfully implemented. This opens a way to compare the Z dependence or mass dependence of impurity transport. In this article, as TESPEL is used in a variety of fields, the TESPEL injection system is summarized together with the method of TESPEL production, TESPEL storage disk, TESPEL guide system, and the differential pumping system. Also, the observation system for TESPEL flight and TESPEL ablation is explained

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom