z-logo
open-access-imgOpen Access
Integration of spintronic interface for nanomagnetic arrays
Author(s) -
Andrew Lyle,
Jonathan Harms,
Todd Klein,
August Lentsch,
Angeline Klemm,
Daniel Martens,
JianPing Wang
Publication year - 2011
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.3672177
Subject(s) - nanomagnet , spintronics , nanotechnology , spin transfer torque , materials science , optoelectronics , logic gate , dipole , magnetic field , computer science , electrical engineering , physics , condensed matter physics , ferromagnetism , engineering , magnetization , quantum mechanics
An experimental demonstration utilizing a spintronic input/output (I/O) interface for arrays of closely spaced nanomagnets is presented. The free layers of magnetic tunnel junctions (MTJs) form dipole coupled nanomagnet arrays which can be applied to different contexts including Magnetic Quantum Cellular Automata (MQCA) for logic applications and self-biased devices for field sensing applications. Dipole coupled nanomagnet arrays demonstrate adaptability to a variety of contexts due to the ability for tuning of magnetic response. Spintronics allows individual nanomagnets to be manipulated with spin transfer torque and monitored with magnetoresistance. This facilitates measurement of the magnetic coupling which is important for (yet to be demonstrated) data propagation reliability studies. In addition, the same magnetic coupling can be tuned to reduce coercivity for field sensing. Dipole coupled nanomagnet arrays have the potential to be thousands of times more energy efficient than CMOS technology for logic applications, and they also have the potential to form multi-axis field sensors

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom