z-logo
open-access-imgOpen Access
Light interference detection on-chip by integrated SNSPD counters
Author(s) -
Paul Cavalier,
Jean-Claude Villégier,
Philippe Feautrier,
C. Constancias,
Alain Morand
Publication year - 2011
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.3656744
Subject(s) - optics , interferometry , spectrometer , physics , detector , wavelength , bandwidth (computing) , chip , optoelectronics , interference (communication) , materials science , channel (broadcasting) , telecommunications , computer science
A SWIFTS device (Stationary Wave Integrated Fourier Transform Spectrometer) has been realized with an array of 24 Superconducting Nanowire Single Photon Detectors (SNSPD), on-chip integrated under a Si3N4 monomode rib-waveguide interferometer. Colored light around 1.55μm wavelength is introduced through end-fire coupling, producing a counter-propagative stationary interferogram over the 40nm wide, 120nm spaced, 4nm thick epi-NbN nanowire array. Modulations in the source bandwidth have been detected using individual waveguide coupled SNSPDs operating in single photon counting mode, which is a step towards light spectrum reconstruction by inverse Fourier transform of the stationary wave intensity. We report the design, fabrication process and in-situ measurement at 4.2K of light power modulation in the interferometer, obtained with variable laser wavelength. Such micro-SWIFTS configuration with 160nm sampling period over 3.84μm distance allows a spectral bandwidth of 2μm and a wavelength resolution of 170nm. The light interferences direct sampling ability is unique and raises wide interest with several potential applications like fringe-tracking, metrology, cryptography or optical tomography

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom