z-logo
open-access-imgOpen Access
Investigation of the photoluminescence properties of thermochemically synthesized CdS nanocrystals
Author(s) -
Mehdi Molaei,
Esmaiel Saievar-Iranizad,
Maziar Marandi,
Nima Taghavinia
Publication year - 2011
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.3562892
Subject(s) - photoluminescence , nanocrystal , thioglycolic acid , materials science , band gap , hexagonal phase , quantum yield , spectroscopy , analytical chemistry (journal) , phase (matter) , nanotechnology , optoelectronics , chemistry , optics , fluorescence , organic chemistry , physics , quantum mechanics
In this work we have synthesized CdS nanocrystals with thermochemical method. CdSO4 and Na2S2O3 were used as the precursors and thioglycolic acid (TGA) was used as capping agent molecule. The structure and optical property of the nanocrystals were characterized by means of XRD, TEM, UV-visible optical spectroscopy and photoluminescence (PL). X-ray diffraction (XRD) and TEM analyses demonstrated hexagonal phase CdS nanocrystals with an average size around 2 nm. Synthesized nanocrystals exhibited band gap of about 3.2 eV and showed a broad band emission from 400-750 nm centered at 504 nm with a (0.27, 0.39) CIE coordinate. This emission can be attributed to recombination of an electron in conduction band with a hole trapped in Cd vacancies near to the valance band of CdS. The best attained photoluminescence quantum yield of the nanocrystals was about 12%, this amount is about 20 times higher than that for thioglycerol (TG) capped CdS nanocrystals

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom