z-logo
open-access-imgOpen Access
Structural characterization of annealed Si1−xCx/SiC multilayers targeting formation of Si nanocrystals in a SiC matrix
Author(s) -
Dengyuan Song,
EunChel Cho,
Gavin Conibeer,
Yidan Huang,
Chris Flynn,
Martin A. Green
Publication year - 2008
Publication title -
journal of applied physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.699
H-Index - 319
eISSN - 1089-7550
pISSN - 0021-8979
DOI - 10.1063/1.2909913
Subject(s) - materials science , raman spectroscopy , amorphous solid , annealing (glass) , analytical chemistry (journal) , x ray reflectivity , fourier transform infrared spectroscopy , transmission electron microscopy , nanocrystal , sputter deposition , crystallography , sputtering , thin film , nanotechnology , chemical engineering , chemistry , optics , composite material , physics , engineering , chromatography
Amorphous Si1-xCx /SiC multilayer films were prepared by alternating deposition of Si-rich Si1-xCx and near-stoichiometric SiC layers by using magnetron sputtering. The as-deposited films were annealed at different temperatures Ta from 800 to 1100 oC. The influence of Ta and Si content in the Si-rich layer on the layered structural stability and on the formation of Si and/or SiC nanocrystals NCs is investigated by a variety of analytical techniques, including x-ray reflectivity XRR, x-ray diffraction XRD, transmission electron microscopy TEM, Raman spectroscopy, and Fourier transform infrared spectrometry FTIR. XRR showed that Si1-xCx /SiC multilayers annealed at temperatures of up to 800 oC retain their layered structure. XRD revealed that Si NCs were formed in samples with a high Si content in the Si-rich layer for Ta 800 oC. At annealing temperatures of 900 oC or greater, the formation of Si NCs was accompanied by the formation of -SiC NCs. Additionally, the formation of Si and SiC NCs was confirmed by TEM imaging and Raman spectroscopy. The Si-NC size obtained from the TEM micrographs is within the range of 3-5 nm. The -SiC NCs are smaller 2-3 nm than Si NCs. Raman analysis identified an 9 cm-1 Raman peak shift in the Si-NC peak to a lower energy with respect to that for bulk Si. FTIR Si-C bond absorption spectra exhibited narrowing of the full width at half maximum and a peak shift toward a higher wave number with increasing Ta. This behavior can be explained by an increase in order as well as an increase in the number of Si-C bonds

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom