z-logo
open-access-imgOpen Access
Two-electron distribution functions and short-range electron correlations of atoms and molecules by first principles T-matrix calculations
Author(s) -
Yoshifumi Noguchi,
Soh Ishii,
Kaoru Ohno
Publication year - 2006
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.2348879
Subject(s) - electron , range (aeronautics) , matrix (chemical analysis) , molecule , distribution (mathematics) , atomic physics , physics , molecular physics , chemistry , materials science , mathematics , quantum mechanics , mathematical analysis , chromatography , composite material
The accurate first principles description of the correlations between electrons has been a topic of interest in molecular physics. We have reported in our previous paper [J. Chem. Phys. 123, 144112 (2005)] that the T matrix, which is the ladder diagrams up to the infinite order, can accurately represent the short-range electron correlations while calculating the double ionization energy spectra of atoms and molecules. In this paper, we calculate the two-electron distribution functions of real systems (Ar, CO, CO2, and C2H2) from the eigenvalue equation associated with the Bethe-Salpeter equation for the T matrix by beginning with the local density approximation of the density functional theory and the GW approximation. We found that when the interelectron distance is very small, the Coulomb hole appears between antiparallel spin electrons due to the short-range repulsive Coulomb interaction. The resulting two-electron distribution functions clearly show the Coulomb hole. (c) 2006 American Institute of Physics

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom