Surface profile of material ablated with high-power lasers in ambient air medium
Author(s) -
S. R. Vatsya,
C. Li,
Suwas Nikumb
Publication year - 2005
Publication title -
journal of applied physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.699
H-Index - 319
eISSN - 1089-7550
pISSN - 0021-8979
DOI - 10.1063/1.1846141
Subject(s) - laser beam quality , beam (structure) , optics , plasma , laser , intensity (physics) , materials science , m squared , beam diameter , beam parameter product , gaussian beam , laser beams , physics , quantum mechanics
In general, material processing with high-power ultra-short-pulsed lasers yields cleaner surfaces, as long as the intensity profile of the laser beam is well shaped. However, the beam suffers distortions during propagation through ambient atmospheric media such as air. Passage through such media causes the beam to self-focus, increasing the intensity further and causing the breakdown of the gas. The resulting plasma distorts the beam\u2019s original profile and the ablatedsurface conforms to the beam profile. A numerical scheme is developed here to calculate the intensity profile of an optical beam propagating through a medium. Intensity distribution of the beam is then used to determine the profile of the processed surface by a geometrical method developed recently. The calculated profile is compared with the experimentally obtained surface with good agreement. For medium spot sizes, the self-focusing and plasma effects tend to cancel each other, maintaining the intensity profile of the beam similar to the original Gaussian distribution. For small spot sizes when the intensity is high, the plasma effects are found to distort the beam profile. This indicates that the experimental parameters can be adjusted to improve the quality of the machined surface.Peer reviewed: YesNRC publication: Ye
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom