z-logo
Premium
Implications of Genotypic Diversity and Phenotypic Plasticity in the Ecophysiological Success of CAM Plants, Examined by Studies on the Vegetation of Madagascar 1
Author(s) -
Kluge M.,
Razanoelisoa B.,
Brulfert J.
Publication year - 2001
Publication title -
plant biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.871
H-Index - 87
eISSN - 1438-8677
pISSN - 1435-8603
DOI - 10.1055/s-2001-15197
Subject(s) - biology , orchidaceae , intraspecific competition , phenotypic plasticity , crassulacean acid metabolism , dominance (genetics) , ecology , ecological niche , habitat , botany , photosynthesis , biochemistry , gene
On the basis of δ 13 C‐values, genotypic diversity and phenotypic plasticity of CAM behaviour in plants of the Malagasy vegetation is surveyed. The study compares CAM patterns performed in the wild on the levels of genera ( Kalanchoë [Crassulaceae], Angraecum [Orchidaceae], Lissochilus [Orchidaceae] and Rhipsalis [Cactaceae]), on the level of a family (Didiereaceae) and finally on the level of a common growth form, namely in leafless orchids. For Rhipsalis, also non‐Malagasy species were included in the comparison. The genus Kalanchoë was found to be dominated by species representing the CAM‐physiotype with CO 2 fixation taking place only during the night, whereas the CAM/C3‐ and the C3‐physiotypes (with limited intrinsic CAM potential) were less frequent. The opposite holds true for Angraecum. In the genus Rhipsalis, in the Didiereacean family and in the leafless orchids only the CAM‐physiotype is represented. The photosynthetic physiotypes of CAM plants were found to be related to the environmental conditions of the habitat. That is, strong CAM performers are typically abundant in the dry climatic zones or at otherwise dry niches, species of the C3‐physiotype (possibly with weak intrinsic capability of CAM performance) are distributed at humid sites and those of the CAM/C3‐physiotype occupy sites with medium and changing exposure to stress. Phenotypic plasticity of CAM, as indicated by the intraspecific variability of the δ 13 C‐values, was lower in the CAM‐physiotype compared with the CAM/C3‐physiotype. Our data support the view that strong stress leads to the dominance of highly adapted specialists among the CAM plants, with low phenotypic plasticity of the photosynthetic behaviour, whereas medium stress advances the unfolding of plastic CAM behaviour. Moreover, the data suggest that genera comprising all three physiotypes (Kalanchoë, Angraecum) are dispersed all over Madagascar, whilst groups comprising only strong CAM performers are restricted to limited areas or special types of habitats. This suggests that both genotypic diversity and phenotypic plasticity are important factors for the ecophysiological success of CAM.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here