Premium
Molecular Phylogeny of Caryophyllidae s.l. Based on MatK Sequences with Special Emphasis on Carnivorous Taxa
Author(s) -
Meimberg H.,
Dittrich P.,
Bringmann G.,
Schlauer J.,
Heubl G.
Publication year - 2000
Publication title -
plant biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.871
H-Index - 87
eISSN - 1438-8677
pISSN - 1435-8603
DOI - 10.1055/s-2000-9460
Subject(s) - biology , monophyly , synapomorphy , cladistics , clade , polygonaceae , evolutionary biology , sister group , phylogenetics , botany , genetics , gene
Despite intensive morphological, chemical and cladistic studies on Caryophyllidae, the circumscription of this subclass and the interfamilial relationships are still under discussion. Using comparative sequencing of the chloroplast matK gene, hypotheses of relationships between the carnivorous Droseraceae, Nepenthaceae and Dioncophyllaceae and ten other families of the Caryophyllidae s.l. were tested and compared with previously published cladograms based on rbcL, 18S rDNA and ORF2280 sequences. Parsimony analyses indicate two well‐differentiated clades. One strongly supported clade comprises the carnivorous families Droseraceae and Nepenthaceae, along with its close relatives Dioncophyllaceae and Ancistrocladaceae. The second clade is restricted to the Polygonaceae, Plumbaginaceae, Tamaricaceae and Frankeniaceae. The Simmondsiaceae are more closely related to Caryophyllales and are at the base of the remaining taxa. Results of this analysis suggest that carnivory within Caryophyllidae s.l. has a monophyletic origin and, with the exception of Triphyophyllum, this syndrome was lost in the taxa of Dioncophyllaceae and Ancistrocladaceae. The exclusion of Drosophyllum from Droseraceae suggests no close relationship with this family. Finally, the data support a sister group relationship between the Plumbaginaceae and Polygonaceae and the Frankeniaceae and Tamaricaceae. An extensive survey of the rpl2 intron via PCR amplification indicates that the intron is absent from chloroplast genomes of Droseraceae and all taxa of Caryophyllales, but is present in Drosophyllum. Consequently, there is evidence for a multiple loss of the intron and strong support that Drosophyllum has affinities outside the Droseraceae. Our sequence data corroborate many aspects of recent cladistic analyses based predominantly on rbcL sequences. This study shows that matK sequences are useful for'phylogenetic inference among closely related members of Caryophyllidae.