z-logo
Premium
Biliary inorganic phosphate as a tool for assessing cold preservation‐reperfusion injury: A study in the isolated perfused rat liver model
Author(s) -
Almada Luciana L.,
Scandizzi Angel L.,
Guibert Edgardo E.,
Furno Graciela,
Rodriguez Joaquin V.
Publication year - 2003
Publication title -
liver transplantation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.814
H-Index - 150
eISSN - 1527-6473
pISSN - 1527-6465
DOI - 10.1053/jlts.2002.50013
Subject(s) - paracellular transport , perfusion , medicine , bile acid , liver transplantation , lactate dehydrogenase , viaspan , reperfusion injury , excretion , alkaline phosphatase , transplantation , cold storage , liver injury , liver function , endocrinology , ischemia , permeability (electromagnetism) , chemistry , biochemistry , biology , enzyme , membrane , horticulture
Ischemia‐reperfusion injury is a major cause of early graft dysfunction after liver transplantation. The bile flow has been suggested as an index of ischemic damage, and severely impaired bile flow seems to be predictive of poor survival in experimental studies. Looking for injury markers, biliary inorganic phosphate has the potential of being a useful endogenous marker of diminished hepatobiliary function because this anion is excreted in the bile by a paracellular pathway and it can detect changes in permeability. The goal of this study was to evaluate the effects of cold preservation‐reperfusion of the liver on bile flow and bile inorganic phosphate and their relationship with storage‐related graft failure. The isolated and perfused rat liver was used to evaluate the injury for ischemia‐reperfusion. The intrahepatic resistance, lactate dehydrogenase release, and potassium and biliary inorganic phosphate concentration were used to estimate viability and function of freshly isolated or cold‐preserved livers. The intrahepatic resistance and the bile flow were consistent and significantly decreased throughout the perfusion time in relation to the increment in storage. Inorganic phosphate is more concentrated in bile from preserved livers, showing an alteration in paracellular pathway, confirmed by the biliary excretion of horseradish peroxidase. After preservation, concentration and excretion of the paracellular marker were increased during the first peak. The second peak appears earlier in preserved livers (10 minutes) with a different shape but without changes in concentration. In conclusion, inorganic phosphate in bile shows changes in paracellular permeability as occurs in livers after 48 hours of cold preservation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here