Endothelin-1 and heme oxygenase-1 as modulators of sinusoidal tone in the stress-exposed rat liver
Author(s) -
Hauke Rensing,
Inge Bauer,
Jian X. Zhang,
Markus Paxian,
Benedikt H. J. Pannen,
Yukihiro Yokoyama,
Mark G. Clemens,
Michael Bauer
Publication year - 2002
Publication title -
hepatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.488
H-Index - 361
eISSN - 1527-3350
pISSN - 0270-9139
DOI - 10.1053/jhep.2002.36934
Subject(s) - heme oxygenase , bosentan , endothelin 1 , intravital microscopy , endothelin receptor , blockade , portal hypertension , endothelin receptor antagonist , portal venous pressure , endocrinology , medicine , chemistry , antagonist , pharmacology , heme , receptor , microcirculation , biochemistry , cirrhosis , enzyme
Heme oxygenase (HO)-1 is up-regulated after ischemia/reperfusion and contributes to maintenance of hepatic perfusion and integrity. Blockade of HO-1 leads to an increased portal pressor response in the stress-exposed liver. We tested whether the increase in portal pressure reflects unmasking of a concomitant up-regulation of the vasoconstrictor endothelin (ET)-1. Hemorrhagic shock induced messenger RNAs encoding HO-1 (16-fold) and ET-1 (9-fold) with a similar time course in the liver. At maximum induction of both mediators, rats received either vehicle or the endothelin ET(A/B) antagonist bosentan (10 mg/kg intravenously). Subsequently, the HO pathway was blocked in all animals by tin-protoporphyrin (SnPP)-IX (50 micromol/kg intravenously). Portal and sinusoidal hemodynamics were measured using microflow probes and intravital microscopy, respectively. Blockade of the HO pathway led to a significant increase in portal resistance (sham/SnPP-IX, 0.17 +/- 0.046 mm Hg. min. mL(-1); shock/vehicle/SnPP-IX, 0.57 +/- 0.148 mm Hg. min. mL(-1); P <.05) and a decrease in sinusoids conducting flow (shock/vehicle/SnPP-IX: baseline, 28.3 +/- 0.85 sinusoids/mm; 10 minutes after SnPP-IX, 23.1 +/- 1.09 sinusoids/mm; P <.05). Intravital microscopy showed narrowing of failing sinusoids colocalizing with stellate cells after blockade of the HO pathway. Blockade of ET(A/B) receptors attenuated the increase in portal resistance (shock/bosentan/SnPP-IX, 0.29 +/- 0.051 mm Hg. min. mL(-1)) and prevented sinusoidal perfusion failure (shock/bosentan/SnPP-IX: baseline, 28.2 +/- 0.97 sinusoids/mm; 10 minutes after SnPP-IX, 28.8 +/- 1.18 sinusoids/mm) as well as sinusoidal narrowing. In conclusion, a functional interaction of the up-regulated vasodilatory HO system and the vasoconstrictor ET-1 on the sinusoidal level exists under stress conditions. Both mediator systems affect sinusoidal diameter via direct action on hepatic stellate cells in vivo.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom