
A micromechanical scratch model to investigate wear mechanisms in UD-GFRP composites
Author(s) -
Slah Mzali,
Fatma Elwasli,
Ali Mkaddem,
Salah Mezlini
Publication year - 2018
Publication title -
mechanics and industry
Language(s) - English
Resource type - Journals
eISSN - 2257-7777
pISSN - 2257-7750
DOI - 10.1051/meca/2018011
Subject(s) - materials science , composite material , tribology , scanning electron microscope , fibre reinforced plastic , glass fiber , scratch , composite number , finite element method , structural engineering , engineering
This study suggests a micromechanical approach to scrutinize the glass fiber reinforced polyester (GFRP) composite tribological behavior. A single indenter scratch test (SST) using spherical tip conical indenter was adopted. The 3D finite element (FE) model was developed into ABAQUS/Explicit commercial code. Both material behavior and damage of polyester matrix and glass fiber was modeled using the Johnson Cook behavior law. Nevertheless, the fiber/matrix interface behavior is described using the cohesive zone approach via the cohesive elements. The elementary wear mechanisms owing to the SST were appraised at different attack angle and normal load by the mean of scanning electron microscope (SEM). In this work, the material removal map was built to emphasize the correlation between the tribological parameters, particularly the attack angle and the normal load, and the material removal process. The numerical results emphasized the significant effects of the attack angle and the penetration depth on the transition of the wear mechanisms from ploughing to composite damage. The experimental wear mechanisms and the predicted elementary wear mechanisms seem to be in a good agreement.