
Remote inspection with multi-copters, radiological sensors and SLAM techniques
Author(s) -
Herculano Carvalho,
Alberto Vale,
Rúben Marques,
Rodrigo Ventura,
Yoeri Brouwer,
Bruno Gonçalves
Publication year - 2018
Publication title -
epj web of conferences
Language(s) - English
Resource type - Journals
eISSN - 2101-6275
pISSN - 2100-014X
DOI - 10.1051/epjconf/201817007014
Subject(s) - radiological weapon , computer science , radiation monitoring , inference , computer vision , artificial intelligence , remote sensing , real time computing , physics , geography , medicine , nuclear physics , radiology
Activated material can be found in different scenarios, such as in nuclear reactor facilities or medical facilities (e.g. in positron emission tomography commonly known as PET scanning). In addition, there are unexpected scenarios resulting from possible accidents, or where dangerous material is hidden for terrorism attacks using nuclear weapons. Thus, a technological solution is important to cope with fast and reliable remote inspection. The multi-copter is a common type of Unmanned Aerial Vehicle (UAV) that provides the ability to perform a first radiological inspection in the described scenarios. The paper proposes a solution with a multi-copter equipped with on-board sensors to perform a 3D reconstruction and a radiological mapping of the scenario. A depth camera and a Geiger-Müler counter are the used sensors. The inspection is performed in two steps: i) a 3D reconstruction of the environment and ii) radiation activity inference to localise and quantify sources of radiation. Experimental results were achieved with real 3D data and simulated radiation activity. Experimental tests with real sources of radiation are planned in the next iteration of the work