
Atomically Dispersed M-N-C Catalysts in Proton Exchange Membrane Fuel Cells: Recent Progress and Perspectives
Author(s) -
Haoran Kong,
Jiarong Liu,
Yue Yu
Publication year - 2021
Publication title -
e3s web of conferences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.203
H-Index - 22
eISSN - 2555-0403
pISSN - 2267-1242
DOI - 10.1051/e3sconf/202130801019
Subject(s) - catalysis , proton exchange membrane fuel cell , transition metal , materials science , pyrolysis , zeolitic imidazolate framework , carbon fibers , cobalt , chemical engineering , nanotechnology , chemistry , metal organic framework , metallurgy , organic chemistry , composite material , adsorption , composite number , engineering
The selection of oxygen reduction reaction (ORR) catalysts plays a key role in enhancing the performance of proton exchange membrane fuel cells (PEMFCs). To optimize the energy conversion technology in PEMFCs and improve the cost-effectiveness of ORR catalysts, atomically dispersed metal-nitrogen-carbon (M-N-C) catalyst is regarded as one of the most promising materials to replace Pt-based catalysts. In this review, we summarize the advantages of atomically dispersed M-N-C catalysts in both physical and chemical properties, including controllable dimensions, ease of accessibility, high surface area and excellent conductivity. Additionally, the unique merits of their cost-effectiveness are also described by a concise comparison with other ORR catalysts. Subsequently, some of its main synthesis methods are based on the most commonly used zeolitic imidazolate framework (ZIF) precursor. Several other precursors involve carbon, nitrogen, and one or more active transition metals (mainly iron or cobalt) are introduced briefly. Although there are a variety of synthesis methods, all these methods are in line with pyrolysis technology. Then, the recent advancements of atomically dispersed M-N-C catalysts related to their development and application of Fe-N-C, Mn-N-C, and Co-N-C catalysts are comprehensively described. Finally, based on some common M-N-C catalysts, many improvement ideas are also proposed. The focus is on how to control the negative reaction in Fe-N-C catalysts, improve the activity of Co-N-C catalysts and Mn-N-C catalysts, and find more suitable transition metal materials to prepare M-N-C catalysts.