Open Access
GNSS induced spoofing simulation based on path planning
Author(s) -
Wang Wenyi,
Wang Jinming
Publication year - 2022
Publication title -
iet radar, sonar and navigation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.489
H-Index - 82
eISSN - 1751-8792
pISSN - 1751-8784
DOI - 10.1049/rsn2.12167
Subject(s) - spoofing attack , gnss applications , computer science , real time computing , motion planning , satellite system , vulnerability (computing) , software , path (computing) , global positioning system , algorithm , artificial intelligence , computer security , computer network , telecommunications , robot , programming language
Abstract Global navigation satellite Systems (GNSS) are highly susceptible to various interferences because of their inherent vulnerability. In these interferences, induced spoofing is very difficult to be detected because it can gradually drag off the tracking points without unlocking the tracking loops of the attacked receiver and cause the victim to obtain a wrong position and/or time information. Furthermore, it is also very difficult to generate induced spoofing data, including simulation data and real data, to evaluate various induced spoofing detection and suppression algorithms. Existing generation algorithms need to precisely control and adjust many parameters of GNSS simulation software even for simulation data. To address this problem, this study proposes a GNSS‐induced spoofing simulation algorithm based on path planning. First, through given planned paths, the proposed algorithm independently generates the authentic and spoofing signals without changing the parameters of GNSS simulation software. After that, the induced spoofing simulation data are synthesised by only adjusting the powers of authentic and spoofing signals. The effectiveness of the proposed algorithm is verified by the positioning solutions and the correlation function outputs of the code and carrier tracking loops.