INS/GPS Sensor Fusion based on Adaptive Fuzzy EKF with Sensitivity to Disturbances
Author(s) -
Sabzevari Danial,
Chatraei Abbas
Publication year - 2021
Publication title -
iet radar, sonar and navigation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.489
H-Index - 82
eISSN - 1751-8792
pISSN - 1751-8784
DOI - 10.1049/rsn2.12144
Subject(s) - sensitivity (control systems) , global positioning system , sensor fusion , extended kalman filter , computer science , fuzzy logic , fusion , control theory (sociology) , artificial intelligence , kalman filter , engineering , electronic engineering , telecommunications , control (management) , linguistics , philosophy
The estimation accuracy of the inertial navigation system integrated with the global positioning system (GPS) through multiple kinds of Kalman filters (KFs) has been widely considered. Since the classical KFs could not overcome environmental disturbances and noises, adaptive and robust structures are utilised in sensor fusion techniques. Here, different types of adaptive structures have been assumed. The fuzzy inference system benefits the adaption of the measurement covariance matrix, a scale factor employed to tune the process covariance matrix and the Chi‐square algorithm to detect and bound the disturbances. The estimation accuracy and robustness of the adaptive fuzzy extended Kalman filter (AFEKF) are compared with the unscented Kalman filter (UKF) and extended Kalman filter (EKF) structure in various scenarios involving position, velocity, attitude, accelerometer and gyroscope bias estimation errors. Likewise, in order to evaluate the AFEKF approach practically, an embedded electronic board is designed involving an ARM microcontroller, an inertial measurement unit sensor, and a GPS receiver, which was installed on a land vehicle. The results demonstrated the superiority of the AFEKF over the UKF and EKF in the case of lower estimation error and higher robustness against disturbances and outliers.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom