CNN‐based estimation of heading direction of vehicle using automotive radar sensor
Author(s) -
Lim Sohee,
Jung Jaehoon,
Lee Byeongho,
Kim SeongCheol,
Lee Seongwook
Publication year - 2021
Publication title -
iet radar, sonar and navigation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.489
H-Index - 82
eISSN - 1751-8792
pISSN - 1751-8784
DOI - 10.1049/rsn2.12084
Subject(s) - heading (navigation) , automotive industry , radar , computer science , estimation , artificial intelligence , computer vision , automotive engineering , engineering , aerospace engineering , telecommunications , systems engineering
Modern autonomous vehicles are being equipped with various automotive sensors to perform special functions. Especially, it is important to predict the heading direction of the front vehicle to adjust the speed of the ego‐vehicle and select appropriate actions. Here, we propose a method for estimating the instantaneous heading direction of a vehicle using automotive radar sensor data. First, using a frequency‐modulated continuous wave (FMCW) radar in the 77 GHz band, we accumulate the automotive radar sensor data for different movements of the front vehicle (e.g., stop, going ahead, reversing, turning left, and turning right). To distinguish the different movements of the vehicle, we use the convolutional neural network (CNN) and train it using the acquired radar sensor data. Because the CNN algorithm usually uses image data as input, it is essential to convert radar sensor data into image data. Therefore, we apply a high‐resolution angle estimation algorithm to the obtained radar data and convert it into a two‐dimensional range map. After the CNN model is trained with the obtained radar sensor data, various movements of the front vehicle can be classified with over 94% of accuracy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom