Memory‐augmented cognitive radar for obstacle avoidance using nearest steering vector search
Author(s) -
Guo Liyong,
Antoniou Michail,
Baker Christopher J.
Publication year - 2021
Publication title -
iet radar, sonar and navigation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.489
H-Index - 82
eISSN - 1751-8792
pISSN - 1751-8784
DOI - 10.1049/rsn2.12012
Subject(s) - computer science , artificial intelligence , computer vision , radar , obstacle , geography , telecommunications , archaeology
This study describes a cognitive radar architecture with application to real‐time obstacle avoidance in mobile robotic platforms. The concept of a world memory map is introduced as a means of providing an enhanced perception of the environment around the robotic platform. This is combined with a specially designed obstacle avoidance algorithm, Nearest Steering Vector Searching, all capable of operating in real‐time. The study analytically derives the radar signal processing algorithm, starting from range‐angle maps, so that a collision free course to a set destination point can be robustly navigated. Finally, the performance of this cognitive approach is examined through a number of proof‐of‐concept experiments using a commercial off‐the‐shelf radar mounted on a mobile ground robotic platform.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom