z-logo
open-access-imgOpen Access
A novel short‐term load forecasting approach based on kernel extreme learning machine: A provincial case in China
Author(s) -
Zhao Xinyue,
Wang Jianxiao,
Zhang Tiance,
Cui Da,
Li Gengyin,
Zhou Ming
Publication year - 2022
Publication title -
iet renewable power generation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.005
H-Index - 76
eISSN - 1752-1424
pISSN - 1752-1416
DOI - 10.1049/rpg2.12373
Subject(s) - term (time) , kernel (algebra) , computer science , extreme learning machine , china , artificial intelligence , machine learning , mathematics , geography , artificial neural network , physics , combinatorics , quantum mechanics , archaeology
With the rapid development of re‐electrification, traditional load forecasting faces a significant increase of influencing factors. Existing literature focuses on examining the influencing factors related to load profiles in order to improve the prediction accuracy. However, a large number of redundant features may lead to the overfitting of the forecasting engine. To enhance the performance of extreme learning machine (ELM) under massive data scale, this paper presents a kernel extreme learning machine (KELM) based method which can be used for short‐term load prediction. First, a feature dimensionality reduction is performed using a kernelized principal component analysis, which aims to eliminate redundant input vectors. Then, the hyperparameters of KELM are optimized to improve the prediction accuracy and generalization. Case studies based on a province‐level power system in China demonstrate that the presented method can significantly improve the accuracy of load forecasting by 3.14% in contrast to traditional ELM.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom