
Transient modelling of doubly‐fed induction generator based wind turbine on full operation condition and rapid starting period based on low voltage ride‐through testing
Author(s) -
Yan Xiangwu,
Cui Sen,
Sun Xuewei,
Sun Ying
Publication year - 2021
Publication title -
iet renewable power generation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.005
H-Index - 76
eISSN - 1752-1424
pISSN - 1752-1416
DOI - 10.1049/rpg2.12090
Subject(s) - induction generator , transient (computer programming) , turbine , wind power , control theory (sociology) , crowbar , engineering , voltage , computer science , electrical engineering , mechanical engineering , control (management) , artificial intelligence , operating system
Transient simulation model of doubly‐fed induction generator‐based wind turbine has a complex model structure and considerable control parameters. An accurate simulation model is especially important for studying the static and transient characteristics of doubly‐fed induction generator‐based wind turbine and the grid‐connected system. Based on the measured data of low voltage ride‐through testing, the integrated parameter identification method is proposed here. Combined with the time‐domain simulation analysis, curve fitting is used to determine the control strategy of doubly‐fed induction generator‐based wind turbine. The improved genetic algorithm is used to identify the generator parameters, power control parameters, and resistance of Crowbar of doubly‐fed induction generator‐based wind turbine. Combined with the electrical parameters provided by the wind turbine manufacturer, electromagnetic transient model on full operation condition and rapid starting period, corresponding to a measured doubly‐fed induction generator‐based wind turbine in West Inner Mongolia Power Grid, is then established, which can operate in the full wind speed range and quickly enter the stable state within 1 s after start‐up. Comparison of simulation results and measured data shows that the established electromagnetic transient simulation model using parameters identified by the proposed method can accurately reflect the key characteristics of doubly‐fed induction generator‐based wind turbine.