Design of a snubber circuit for low voltage DC solid‐state circuit breakers
Author(s) -
Wang Zhongying,
Sankara Narayanan Ekkanath Madathil
Publication year - 2021
Publication title -
iet power electronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.637
H-Index - 77
eISSN - 1755-4543
pISSN - 1755-4535
DOI - 10.1049/pel2.12092
Subject(s) - snubber , circuit breaker , electrical engineering , transient recovery voltage , state (computer science) , voltage , computer science , materials science , engineering , capacitor , constant power circuit , switched mode power supply , algorithm
Solid‐state circuit breakers (SSCBs) are designed to interrupt fault currents typically several orders faster than its electromechanical counterparts. However, such an ultrafast switching operation would produce a dangerous overvoltage which might cause damages to SSCBs and other circuit elements in the system. This paper proposes a novel snubber circuit for suppressing the overvoltage. It takes the advantages of both resistor‐capacitor‐diode (RCD) snubbers and metal oxide varistors (MOVs). Its operating process is analysed before the proposed snubber circuit for 400V DC SSCBs is designed. Pspice simulator is employed for simulating the operating process and a prototype SSCB with the proposed snubber is built and tested in a lab‐scale DC system. The results of simulation and experiment validate the effectiveness of the proposed snubber.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom