
Planning LV grids by predicting residual loads of households via methods of machine learning
Author(s) -
Maximilian Rose,
Lukas Lenz,
Torsten Sowa,
Imke Hebbeln
Publication year - 2020
Publication title -
cired - open access proceedings journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.23
H-Index - 13
ISSN - 2515-0855
DOI - 10.1049/oap-cired.2021.0254
Subject(s) - residual , grid , computer science , artificial neural network , voltage , power (physics) , investment (military) , electricity , low voltage , artificial intelligence , mathematical optimization , machine learning , algorithm , engineering , mathematics , electrical engineering , politics , physics , geometry , quantum mechanics , law , political science