z-logo
open-access-imgOpen Access
Nano‐gold micelles loaded Dox and Elacridar for reversing drug resistance of breast cancer
Author(s) -
Wen LiuJing,
Wang YueSheng,
Zhang Jie
Publication year - 2023
Publication title -
iet nanobiotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.366
H-Index - 38
eISSN - 1751-875X
pISSN - 1751-8741
DOI - 10.1049/nbt2.12102
Subject(s) - reversing , micelle , nano , breast cancer , cancer , drug , drug resistance , materials science , cancer research , pharmacology , medicine , chemistry , composite material , biology , microbiology and biotechnology , aqueous solution
Abstract The aim of this study was to provide a new effective carrier for rescuing the sensitivity of drug‐resistant in breast cancer cells. Nano‐gold micelles loaded with Dox and Elacridar (FP‐ssD@A‐E) were chemically synthesised. With the increase in the amount of Dox and Elacridar, the encapsulation rate of FP‐ssD@A‐E gradually increased, and the drug loading rate gradually decreased. FP‐ss@A‐E had a sustained‐release effect. Dox, Elacridar, FP‐ss@AuNPs, and FP‐ssD@A‐E significantly improved cell apoptosis, in which, FP‐ssD@A‐E was the most significant. FP‐ssD@A‐E significantly decreased the cell viability and improved the Dox uptake. The levels of VEGFR‐1, P‐gp, IL‐6, and i‐NOS were significantly decreased after Dox, Dox + Elacridar, FP‐ss@AuNPs, and FP‐ssD@A‐E treatment. It was worth noting that FP‐ssD@A‐E had the most significant effects. The prepared FP‐ssD@A‐E micelles, which were spherical in shape, uniform in particle size distribution, and had good drug loading performance and encapsulation efficiency.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here