z-logo
open-access-imgOpen Access
Maritime targets classification based on CNN using Gaofen‐3 SAR images
Author(s) -
Ma Mengyuan,
Zhang Haojie,
Sun Xiaokun,
Chen Jie
Publication year - 2019
Publication title -
the journal of engineering
Language(s) - English
Resource type - Journals
ISSN - 2051-3305
DOI - 10.1049/joe.2019.0742
Subject(s) - synthetic aperture radar , computer science , convolutional neural network , artificial intelligence , remote sensing , support vector machine , computer vision , pattern recognition (psychology) , geology
The classification and detection of maritime targets are widely used in shipping navigation and military fields. With the development of spaceborne synthetic aperture radar (SAR) technology, more and more very high‐resolution SAR images can be acquired for maritime targets recognition. However, due to the different imaging mechanisms between SAR images and optical images, it is difficult and laborious to interpret SAR images manually. This study uses a modified Alexnet structure to realise maritime targets classification on the Gaofen‐3 spaceborne SAR images. The maritime targets dataset (MTD), including boats, cargo ships, container ships, windmills, oil tankers, and iron towers, is conducted. Moreover, the proposed convolution neural networks (CNNs) structure is trained and tested on the MTD. Experimental results show that the model can get an accuracy of 92.10% in classifying the six kinds of targets, and the performance is superior compared with other CNNs and traditional supportive vector machine algorithms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here