Open Access
Three‐dimensional sparse recovery space‐time adaptive processing for airborne radar
Author(s) -
Duan Keqing,
Xu Hong,
Yuan Huadong,
Xie Wenchong,
Wang Yongliang
Publication year - 2019
Publication title -
the journal of engineering
Language(s) - English
Resource type - Journals
ISSN - 2051-3305
DOI - 10.1049/joe.2019.0343
Subject(s) - clutter , space time adaptive processing , computer science , radar , algorithm , covariance matrix , constant false alarm rate , artificial intelligence , radar engineering details , radar imaging , telecommunications
Conventional 3‐dimensional (3D) space‐time adaptive processing (STAP) has achieved good performance for non‐stationary clutter suppression. However, the performance of 3D STAP rapidly degrades when applied to heterogeneous clutter environment due to the requirement of a large number of independent and identically distributed training samples to estimate the clutter covariance matrix. This study applies an efficient sparse recovery algorithm, i.e. multiple sparse Bayesian learning (MSBL), with tuning, to solve the limited sample problem of 3D STAP in airborne radar. Differing with the conventional 2D sparsity‐based STAP, the proposed method utilises the sparsity of clutter in elevation‐azimuth‐Doppler domain and recovers the 3D clutter spectrum. Whereas in its’ large computational load, a fast algorithm extending the relevance vector machine is also considered.